An Improved Chicken Swarm Optimization Algorithm for Feature Selection
نویسندگان
چکیده
Abstract In recent years, feature selection is becoming more and important in data mining. Its target that reduce the dimensionality of datasets while at least maintaining classification accuracy. There are some researches about chicken swarm optimization algorithm (CSO) applied to selection, effect extraordinary compared with traditional intelligence algorithms. However, there a complex search space challenging task CSO still has default quickly gets stuck local minimum problem. An improved (ICSO) proposed this paper, which introduces Levy flight strategy hen location update nonlinear decreasing inertial weight chick increase global ability avoid getting Compared other three algorithms on eighteen UCI shows ICSO can greatly redundant features ensuring
منابع مشابه
An improved particle swarm optimization for feature selection
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rule...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Electrical Engineering
سال: 2022
ISSN: ['1876-1100', '1876-1119']
DOI: https://doi.org/10.1007/978-981-19-2456-9_19